In [1]:
import snappy

In this notebook we work with the infinite family of Legendrian links from Theorem 1.2.(i) whose Stein traces are all equal. First we load the surgery description of these links.

In [2]:
L=snappy.Manifold('surgery_description.lnk')

Then we show that all the knots (with short slopes) in the infinite family have different volumes and thus are non-isotopic. By the limit formula from Neumann-Zagier it follows that they are all non-isometric for any value of n.

In [3]:
for n in range(0,100):
    L.dehn_fill([(-1-n,n),(1-n,n),(0,0)])
    count=0
    while count<10:
        idf=L.identify()
        if idf!=[]:
            K=snappy.Manifold(idf[-1])
            print(n,L,K.volume(verified=True),idf)
            count=1000
        else:
            try:
                vol=L.volume(verified=True)
                print(n,L,vol,idf)
                count=1000
            except:
                L.randomize()
                count=count+1
0 unnamed link(-1,0)(1,0)(0,0) 7.79830023217? [o9_37732(0,0), 10_133(0,0), K9_591(0,0), K10n4(0,0)]
2 unnamed link(-3,2)(-1,2)(0,0) 12.5055410376? []
3 unnamed link(-4,3)(-2,3)(0,0) 13.7850145159? []
4 unnamed link(-5,4)(-3,4)(0,0) 14.5775431080? []
5 unnamed link(-6,5)(-4,5)(0,0) 15.0815931897? []
6 unnamed link(-7,6)(-5,6)(0,0) 15.4121286690? []
7 unnamed link(-8,7)(-6,7)(0,0) 15.6364138716? []
8 unnamed link(-9,8)(-7,8)(0,0) 15.7938517339? []
9 unnamed link(-10,9)(-8,9)(0,0) 15.9078687115? []
10 unnamed link(-11,10)(-9,10)(0,0) 15.9927552018? []
11 unnamed link(-12,11)(-10,11)(0,0) 16.0574967093? []
12 unnamed link(-13,12)(-11,12)(0,0) 16.1079194218? []
13 unnamed link(-14,13)(-12,13)(0,0) 16.1479125781? []
14 unnamed link(-15,14)(-13,14)(0,0) 16.1801426558? []
15 unnamed link(-16,15)(-14,15)(0,0) 16.2064824573? []
16 unnamed link(-17,16)(-15,16)(0,0) 16.2282761900? []
17 unnamed link(-18,17)(-16,17)(0,0) 16.2465076342? []
18 unnamed link(-19,18)(-17,18)(0,0) 16.2619095002? []
19 unnamed link(-20,19)(-18,19)(0,0) 16.2750361811? []
20 unnamed link(-21,20)(-19,20)(0,0) 16.2863131741? []
21 unnamed link(-22,21)(-20,21)(0,0) 16.2960713016? []
22 unnamed link(-23,22)(-21,22)(0,0) 16.3045708234? []
23 unnamed link(-24,23)(-22,23)(0,0) 16.3120187021? []
24 unnamed link(-25,24)(-23,24)(0,0) 16.3185811481? []
25 unnamed link(-26,25)(-24,25)(0,0) 16.3243928599? []
26 unnamed link(-27,26)(-25,26)(0,0) 16.3295639144? []
27 unnamed link(-28,27)(-26,27)(0,0) 16.3341849663? []
28 unnamed link(-29,28)(-27,28)(0,0) 16.3383312120? []
29 unnamed link(-30,29)(-28,29)(0,0) 16.3420654427? []
30 unnamed link(-31,30)(-29,30)(0,0) 16.3454404182? []
31 unnamed link(-32,31)(-30,31)(0,0) 16.3485007270? []
32 unnamed link(-33,32)(-31,32)(0,0) 16.3512842575? []
33 unnamed link(-34,33)(-32,33)(0,0) 16.3538233694? []
34 unnamed link(-35,34)(-33,34)(0,0) 16.3561458329? []
35 unnamed link(-36,35)(-34,35)(0,0) 16.358275588? []
36 unnamed link(-37,36)(-35,36)(0,0) 16.360233359? []
37 unnamed link(-38,37)(-36,37)(0,0) 16.3620371606? []
38 unnamed link(-39,38)(-37,38)(0,0) 16.3637027121? []
39 unnamed link(-40,39)(-38,39)(0,0) 16.3652437772? []
40 unnamed link(-41,40)(-39,40)(0,0) 16.3666724502? []
41 unnamed link(-42,41)(-40,41)(0,0) 16.3679993926? []
42 unnamed link(-43,42)(-41,42)(0,0) 16.369234032? []
43 unnamed link(-44,43)(-42,43)(0,0) 16.3703847290? []
44 unnamed link(-45,44)(-43,44)(0,0) 16.3714589199? []
45 unnamed link(-46,45)(-44,45)(0,0) 16.3724632355? []
46 unnamed link(-47,46)(-45,46)(0,0) 16.3734036039? []
47 unnamed link(-48,47)(-46,47)(0,0) 16.3742853380? []
48 unnamed link(-49,48)(-47,48)(0,0) 16.3751132106? []
49 unnamed link(-50,49)(-48,49)(0,0) 16.375891519? []
50 unnamed link(-51,50)(-49,50)(0,0) 16.3766241393? []
51 unnamed link(-52,51)(-50,51)(0,0) 16.377314578? []
52 unnamed link(-53,52)(-51,52)(0,0) 16.3779660106? []
53 unnamed link(-54,53)(-52,53)(0,0) 16.3785813196? []
54 unnamed link(-55,54)(-53,54)(0,0) 16.3791631262? []
55 unnamed link(-56,55)(-54,55)(0,0) 16.3797138182? []
56 unnamed link(-57,56)(-55,56)(0,0) 16.3802355745? []
57 unnamed link(-58,57)(-56,57)(0,0) 16.380730387? []
58 unnamed link(-59,58)(-57,58)(0,0) 16.381200078? []
59 unnamed link(-60,59)(-58,59)(0,0) 16.3816463194? []
60 unnamed link(-61,60)(-59,60)(0,0) 16.382070647? []
61 unnamed link(-62,61)(-60,61)(0,0) 16.382474471? []
62 unnamed link(-63,62)(-61,62)(0,0) 16.382859091? []
63 unnamed link(-64,63)(-62,63)(0,0) 16.3832257050? []
64 unnamed link(-65,64)(-63,64)(0,0) 16.383575421? []
65 unnamed link(-66,65)(-64,65)(0,0) 16.3839092593? []
66 unnamed link(-67,66)(-65,66)(0,0) 16.384228168? []
67 unnamed link(-68,67)(-66,67)(0,0) 16.3845330234? []
68 unnamed link(-69,68)(-67,68)(0,0) 16.3848246392? []
69 unnamed link(-70,69)(-68,69)(0,0) 16.3851037708? []
70 unnamed link(-71,70)(-69,70)(0,0) 16.3853711206? []
71 unnamed link(-72,71)(-70,71)(0,0) 16.385627343? []
72 unnamed link(-73,72)(-71,72)(0,0) 16.385873045? []
73 unnamed link(-74,73)(-72,73)(0,0) 16.386108797? []
74 unnamed link(-75,74)(-73,74)(0,0) 16.386335127? []
75 unnamed link(-76,75)(-74,75)(0,0) 16.3865525311? []
76 unnamed link(-77,76)(-75,76)(0,0) 16.3867614729? []
77 unnamed link(-78,77)(-76,77)(0,0) 16.386962386? []
78 unnamed link(-79,78)(-77,78)(0,0) 16.387155675? []
79 unnamed link(-80,79)(-78,79)(0,0) 16.387341723? []
80 unnamed link(-81,80)(-79,80)(0,0) 16.3875208843? []
81 unnamed link(-82,81)(-80,81)(0,0) 16.3876934969? []
82 unnamed link(-83,82)(-81,82)(0,0) 16.387859876? []
83 unnamed link(-84,83)(-82,83)(0,0) 16.388020317? []
84 unnamed link(-85,84)(-83,84)(0,0) 16.3881750985? []
85 unnamed link(-86,85)(-84,85)(0,0) 16.3883244854? []
86 unnamed link(-87,86)(-85,86)(0,0) 16.3884687246? []
87 unnamed link(-88,87)(-86,87)(0,0) 16.3886080499? []
88 unnamed link(-89,88)(-87,88)(0,0) 16.388742682? []
89 unnamed link(-90,89)(-88,89)(0,0) 16.3888728294? []
90 unnamed link(-91,90)(-89,90)(0,0) 16.3889986889? []
91 unnamed link(-92,91)(-90,91)(0,0) 16.389120447? []
92 unnamed link(-93,92)(-91,92)(0,0) 16.389238280? []
93 unnamed link(-94,93)(-92,93)(0,0) 16.3893523539? []
94 unnamed link(-95,94)(-93,94)(0,0) 16.3894628280? []
95 unnamed link(-96,95)(-94,95)(0,0) 16.3895698518? []
96 unnamed link(-97,96)(-95,96)(0,0) 16.3896735674? []
97 unnamed link(-98,97)(-96,97)(0,0) 16.3897741098? []
98 unnamed link(-99,98)(-97,98)(0,0) 16.389871608? []
99 unnamed link(-100,99)(-98,99)(0,0) 16.3899661811? []

Next, we verify that the Legendrian surgeries (for short slopes) are diffeomorphic. (Since the knots all have tb=1, the Legendrian surgery corresponds to a topological 0-surgery.)

In [4]:
def better_is_isometric_to(X,Y,index):
    """
    Returns True if X and Y are isometric.
    Returns False if X and Y have different homologies.
    Returns 'unclear' if SnapPy cannot verify it.
    The higher the index the harder SnapPy tries.
    """     
    w='unclear'
    if X.homology()!=Y.homology():
        w=False
    if w=='unclear':
        for i in (0,index):
            try:
                w=X.is_isometric_to(Y)
            except RuntimeError:
                pass
            except snappy.SnapPeaFatalError:
                pass
            if w==True:
                break
            if w==False:
                w='unclear'
            X.randomize()
            Y.randomize()
            i=i+1
    return w
In [5]:
K=snappy.Manifold('K10n4(0,1)')

for n in range(0,100):
    L.dehn_fill([(-1-n,n),(1-n,n),(0,1)])
    print(n,L,better_is_isometric_to(K,L,1000))
0 unnamed link(-1,0)(1,0)(0,1) True
1 unnamed link(-2,1)(0,1)(0,1) True
2 unnamed link(-3,2)(-1,2)(0,1) True
3 unnamed link(-4,3)(-2,3)(0,1) True
4 unnamed link(-5,4)(-3,4)(0,1) True
5 unnamed link(-6,5)(-4,5)(0,1) True
6 unnamed link(-7,6)(-5,6)(0,1) True
7 unnamed link(-8,7)(-6,7)(0,1) True
8 unnamed link(-9,8)(-7,8)(0,1) True
9 unnamed link(-10,9)(-8,9)(0,1) True
10 unnamed link(-11,10)(-9,10)(0,1) True
11 unnamed link(-12,11)(-10,11)(0,1) True
12 unnamed link(-13,12)(-11,12)(0,1) True
13 unnamed link(-14,13)(-12,13)(0,1) True
14 unnamed link(-15,14)(-13,14)(0,1) True
15 unnamed link(-16,15)(-14,15)(0,1) True
16 unnamed link(-17,16)(-15,16)(0,1) True
17 unnamed link(-18,17)(-16,17)(0,1) True
18 unnamed link(-19,18)(-17,18)(0,1) True
19 unnamed link(-20,19)(-18,19)(0,1) True
20 unnamed link(-21,20)(-19,20)(0,1) True
21 unnamed link(-22,21)(-20,21)(0,1) True
22 unnamed link(-23,22)(-21,22)(0,1) True
23 unnamed link(-24,23)(-22,23)(0,1) True
24 unnamed link(-25,24)(-23,24)(0,1) True
25 unnamed link(-26,25)(-24,25)(0,1) True
26 unnamed link(-27,26)(-25,26)(0,1) True
27 unnamed link(-28,27)(-26,27)(0,1) True
28 unnamed link(-29,28)(-27,28)(0,1) True
29 unnamed link(-30,29)(-28,29)(0,1) True
30 unnamed link(-31,30)(-29,30)(0,1) True
31 unnamed link(-32,31)(-30,31)(0,1) True
32 unnamed link(-33,32)(-31,32)(0,1) True
33 unnamed link(-34,33)(-32,33)(0,1) True
34 unnamed link(-35,34)(-33,34)(0,1) True
35 unnamed link(-36,35)(-34,35)(0,1) True
36 unnamed link(-37,36)(-35,36)(0,1) True
37 unnamed link(-38,37)(-36,37)(0,1) True
38 unnamed link(-39,38)(-37,38)(0,1) True
39 unnamed link(-40,39)(-38,39)(0,1) True
40 unnamed link(-41,40)(-39,40)(0,1) True
41 unnamed link(-42,41)(-40,41)(0,1) True
42 unnamed link(-43,42)(-41,42)(0,1) True
43 unnamed link(-44,43)(-42,43)(0,1) True
44 unnamed link(-45,44)(-43,44)(0,1) True
45 unnamed link(-46,45)(-44,45)(0,1) True
46 unnamed link(-47,46)(-45,46)(0,1) True
47 unnamed link(-48,47)(-46,47)(0,1) True
48 unnamed link(-49,48)(-47,48)(0,1) True
49 unnamed link(-50,49)(-48,49)(0,1) True
50 unnamed link(-51,50)(-49,50)(0,1) True
51 unnamed link(-52,51)(-50,51)(0,1) True
52 unnamed link(-53,52)(-51,52)(0,1) True
53 unnamed link(-54,53)(-52,53)(0,1) True
54 unnamed link(-55,54)(-53,54)(0,1) True
55 unnamed link(-56,55)(-54,55)(0,1) True
56 unnamed link(-57,56)(-55,56)(0,1) True
57 unnamed link(-58,57)(-56,57)(0,1) True
58 unnamed link(-59,58)(-57,58)(0,1) True
59 unnamed link(-60,59)(-58,59)(0,1) True
60 unnamed link(-61,60)(-59,60)(0,1) True
61 unnamed link(-62,61)(-60,61)(0,1) True
62 unnamed link(-63,62)(-61,62)(0,1) True
63 unnamed link(-64,63)(-62,63)(0,1) True
64 unnamed link(-65,64)(-63,64)(0,1) True
65 unnamed link(-66,65)(-64,65)(0,1) True
66 unnamed link(-67,66)(-65,66)(0,1) True
67 unnamed link(-68,67)(-66,67)(0,1) True
68 unnamed link(-69,68)(-67,68)(0,1) True
69 unnamed link(-70,69)(-68,69)(0,1) True
70 unnamed link(-71,70)(-69,70)(0,1) True
71 unnamed link(-72,71)(-70,71)(0,1) True
72 unnamed link(-73,72)(-71,72)(0,1) True
73 unnamed link(-74,73)(-72,73)(0,1) True
74 unnamed link(-75,74)(-73,74)(0,1) True
75 unnamed link(-76,75)(-74,75)(0,1) True
76 unnamed link(-77,76)(-75,76)(0,1) True
77 unnamed link(-78,77)(-76,77)(0,1) True
78 unnamed link(-79,78)(-77,78)(0,1) True
79 unnamed link(-80,79)(-78,79)(0,1) True
80 unnamed link(-81,80)(-79,80)(0,1) True
81 unnamed link(-82,81)(-80,81)(0,1) True
82 unnamed link(-83,82)(-81,82)(0,1) True
83 unnamed link(-84,83)(-82,83)(0,1) True
84 unnamed link(-85,84)(-83,84)(0,1) True
85 unnamed link(-86,85)(-84,85)(0,1) True
86 unnamed link(-87,86)(-85,86)(0,1) True
87 unnamed link(-88,87)(-86,87)(0,1) True
88 unnamed link(-89,88)(-87,88)(0,1) True
89 unnamed link(-90,89)(-88,89)(0,1) True
90 unnamed link(-91,90)(-89,90)(0,1) True
91 unnamed link(-92,91)(-90,91)(0,1) True
92 unnamed link(-93,92)(-91,92)(0,1) True
93 unnamed link(-94,93)(-92,93)(0,1) True
94 unnamed link(-95,94)(-93,94)(0,1) True
95 unnamed link(-96,95)(-94,95)(0,1) True
96 unnamed link(-97,96)(-95,96)(0,1) True
97 unnamed link(-98,97)(-96,97)(0,1) True
98 unnamed link(-99,98)(-97,98)(0,1) True
99 unnamed link(-100,99)(-98,99)(0,1) True

In addition, we verify that the contact (+1)-surgeries are all non-isometric by comparing their volumes:

In [6]:
def better_volume(M,index=100):
    '''Computes the verified volume. Returns 'unclear' if SnapPy could not do it.'''
    count=0
    while count<index:
        try:
            return M.volume(verified=True)
        except:
            M.randomize()
            count=count+1
    return 'unclear'
In [7]:
K=snappy.Manifold('K10n4(2,1)')
print(K,K.volume(verified=True))

for n in range(1,100):
    L.dehn_fill([(-1-n,n),(1-n,n),(2,1)])
    print(n,L,better_volume(L))
K10n4(2,1) 5.64676956190?
1 unnamed link(-2,1)(0,1)(2,1) unclear
2 unnamed link(-3,2)(-1,2)(2,1) unclear
3 unnamed link(-4,3)(-2,3)(2,1) 11.6071772701?
4 unnamed link(-5,4)(-3,4)(2,1) 12.3464578086?
5 unnamed link(-6,5)(-4,5)(2,1) 12.8163759295?
6 unnamed link(-7,6)(-5,6)(2,1) 13.1240633431?
7 unnamed link(-8,7)(-6,7)(2,1) 13.3327605412?
8 unnamed link(-9,8)(-7,8)(2,1) 13.4793338329?
9 unnamed link(-10,9)(-8,9)(2,1) 13.5855861547?
10 unnamed link(-11,10)(-9,10)(2,1) 13.6647787822?
11 unnamed link(-12,11)(-10,11)(2,1) 13.7252420610?
12 unnamed link(-13,12)(-11,12)(2,1) 13.7723783816?
13 unnamed link(-14,13)(-12,13)(2,1) 13.8097968589?
14 unnamed link(-15,14)(-13,14)(2,1) 13.8399744408?
15 unnamed link(-16,15)(-14,15)(2,1) 13.8646527080?
16 unnamed link(-17,16)(-15,16)(2,1) 13.8850830166?
17 unnamed link(-18,17)(-16,17)(2,1) 13.9021821086?
18 unnamed link(-19,18)(-17,18)(2,1) 13.9166333916?
19 unnamed link(-20,19)(-18,19)(2,1) 13.9289543846?
20 unnamed link(-21,20)(-19,20)(2,1) 13.9395425819?
21 unnamed link(-22,21)(-20,21)(2,1) 13.9487072409?
22 unnamed link(-23,22)(-21,22)(2,1) 13.9566918032?
23 unnamed link(-24,23)(-22,23)(2,1) 13.9636899616?
24 unnamed link(-25,24)(-23,24)(2,1) 13.9698573453?
25 unnamed link(-26,25)(-24,25)(2,1) 13.9753201325?
26 unnamed link(-27,26)(-25,26)(2,1) 13.9801814780?
27 unnamed link(-28,27)(-26,27)(2,1) 13.9845263659?
28 unnamed link(-29,28)(-27,28)(2,1) 13.9884253115?
29 unnamed link(-30,29)(-28,29)(2,1) 13.9919372145?
30 unnamed link(-31,30)(-29,30)(2,1) 13.9951115778?
31 unnamed link(-32,31)(-30,31)(2,1) 13.9979902478?
32 unnamed link(-33,32)(-31,32)(2,1) 14.0006087905?
33 unnamed link(-34,33)(-32,33)(2,1) 14.0029975884?
34 unnamed link(-35,34)(-33,34)(2,1) 14.0051827197?
35 unnamed link(-36,35)(-34,35)(2,1) 14.0071866691?
36 unnamed link(-37,36)(-35,36)(2,1) 14.0090289056?
37 unnamed link(-38,37)(-36,37)(2,1) 14.0107263541?
38 unnamed link(-39,38)(-37,38)(2,1) 14.0122937844?
39 unnamed link(-40,39)(-38,39)(2,1) 14.0137441315?
40 unnamed link(-41,40)(-39,40)(2,1) 14.0150887624?
41 unnamed link(-42,41)(-40,41)(2,1) 14.0163376986?
42 unnamed link(-43,42)(-41,42)(2,1) 14.0174998026?
43 unnamed link(-44,43)(-42,43)(2,1) 14.0185829349?
44 unnamed link(-45,44)(-43,44)(2,1) 14.0195940871?
45 unnamed link(-46,45)(-44,45)(2,1) 14.0205394942?
46 unnamed link(-47,46)(-45,46)(2,1) 14.0214247310?
47 unnamed link(-48,47)(-46,47)(2,1) 14.0222547940?
48 unnamed link(-49,48)(-47,48)(2,1) 14.0230341720?
49 unnamed link(-50,49)(-48,49)(2,1) 14.0237669068?
50 unnamed link(-51,50)(-49,50)(2,1) 14.0244566451?
51 unnamed link(-52,51)(-50,51)(2,1) 14.0251066846?
52 unnamed link(-53,52)(-51,52)(2,1) 14.0257200128?
53 unnamed link(-54,53)(-52,53)(2,1) 14.0262993416?
54 unnamed link(-55,54)(-53,54)(2,1) 14.0268471371?
55 unnamed link(-56,55)(-54,55)(2,1) 14.0273656458?
56 unnamed link(-57,56)(-55,56)(2,1) 14.0278569179?
57 unnamed link(-58,57)(-56,57)(2,1) 14.0283228273?
58 unnamed link(-59,58)(-57,58)(2,1) 14.0287650896?
59 unnamed link(-60,59)(-58,59)(2,1) 14.0291852777?
60 unnamed link(-61,60)(-59,60)(2,1) 14.0295848359?
61 unnamed link(-62,61)(-60,61)(2,1) 14.0299650926?
62 unnamed link(-63,62)(-61,62)(2,1) 14.0303272707?
63 unnamed link(-64,63)(-62,63)(2,1) 14.0306724979?
64 unnamed link(-65,64)(-63,64)(2,1) 14.0310018153?
65 unnamed link(-66,65)(-64,65)(2,1) 14.0313161856?
66 unnamed link(-67,66)(-65,66)(2,1) 14.0316164993?
67 unnamed link(-68,67)(-66,67)(2,1) 14.0319035820?
68 unnamed link(-69,68)(-67,68)(2,1) 14.0321781994?
69 unnamed link(-70,69)(-68,69)(2,1) 14.0324410626?
70 unnamed link(-71,70)(-69,70)(2,1) 14.0326928328?
71 unnamed link(-72,71)(-70,71)(2,1) 14.0329341254?
72 unnamed link(-73,72)(-71,72)(2,1) 14.0331655135?
73 unnamed link(-74,73)(-72,73)(2,1) 14.0333875319?
74 unnamed link(-75,74)(-73,74)(2,1) 14.0336006794?
75 unnamed link(-76,75)(-74,75)(2,1) 14.0338054224?
76 unnamed link(-77,76)(-75,76)(2,1) 14.0340021969?
77 unnamed link(-78,77)(-76,77)(2,1) 14.0341914109?
78 unnamed link(-79,78)(-77,78)(2,1) 14.0343734469?
79 unnamed link(-80,79)(-78,79)(2,1) 14.0345486632?
80 unnamed link(-81,80)(-79,80)(2,1) 14.0347173962?
81 unnamed link(-82,81)(-80,81)(2,1) 14.0348799618?
82 unnamed link(-83,82)(-81,82)(2,1) 14.0350366569?
83 unnamed link(-84,83)(-82,83)(2,1) 14.0351877608?
84 unnamed link(-85,84)(-83,84)(2,1) 14.0353335362?
85 unnamed link(-86,85)(-84,85)(2,1) 14.0354742307?
86 unnamed link(-87,86)(-85,86)(2,1) 14.0356100778?
87 unnamed link(-88,87)(-86,87)(2,1) 14.0357412974?
88 unnamed link(-89,88)(-87,88)(2,1) 14.0358680974?
89 unnamed link(-90,89)(-88,89)(2,1) 14.0359906740?
90 unnamed link(-91,90)(-89,90)(2,1) 14.0361092127?
91 unnamed link(-92,91)(-90,91)(2,1) 14.0362238888?
92 unnamed link(-93,92)(-91,92)(2,1) 14.0363348684?
93 unnamed link(-94,93)(-92,93)(2,1) 14.0364423086?
94 unnamed link(-95,94)(-93,94)(2,1) 14.0365463583?
95 unnamed link(-96,95)(-94,95)(2,1) 14.0366471587?
96 unnamed link(-97,96)(-95,96)(2,1) 14.0367448436?
97 unnamed link(-98,97)(-96,97)(2,1) 14.0368395401?
98 unnamed link(-99,98)(-97,98)(2,1) 14.0369313688?
99 unnamed link(-100,99)(-98,99)(2,1) 14.0370204444?

We search for other equal fillings.

In [8]:
def gcd(a, b):
    while b != 0:
        a, b = b, a % b
    return a

def coprime(a, b):
    return gcd(a, b) == 1
In [9]:
K=snappy.Manifold('K10n4')

for p in range(-50,50):
    for q in range(1,25):
        if coprime(p,q):
            K.dehn_fill((p,q))
            for n in range(1,10):
                L.dehn_fill([(-1-n,n),(1-n,n),(p,q)])
                if better_is_isometric_to(K,L,100)==True:
                    print(L,K,'True')
unnamed link(-2,1)(0,1)(0,1) K10n4(0,1) True
unnamed link(-3,2)(-1,2)(0,1) K10n4(0,1) True
unnamed link(-4,3)(-2,3)(0,1) K10n4(0,1) True
unnamed link(-5,4)(-3,4)(0,1) K10n4(0,1) True
unnamed link(-6,5)(-4,5)(0,1) K10n4(0,1) True
unnamed link(-7,6)(-5,6)(0,1) K10n4(0,1) True
unnamed link(-8,7)(-6,7)(0,1) K10n4(0,1) True
unnamed link(-9,8)(-7,8)(0,1) K10n4(0,1) True
unnamed link(-10,9)(-8,9)(0,1) K10n4(0,1) True

So it seems that 0 is the only slopes where we have equal surgeries.